Development of Indium-Free Transparent Conductive Films by the Sol-Gel Method

M. Skof, H. Wang, A. Walker, A. Rana, A. Rexach

TWI Ltd., UK, Materials & Engineering Research Institute, Sheffield Hallam University, UK

Motivation

The Project
- **Problem:** Increasing demand for indium tin oxide (ITO), decreasing resources, high price
- **Aim:** Finding an alternative to ITO as standard for transparent conductive coatings (TCCs), e.g. for displays and solar cells
- **Approach:** Low cost sol-gel process, using widely available metallic elements and recent advantages in nanostructured coatings
- **Potential ITO Substitute:** Titanium dioxide based material, doped
- **Desired outcome:** Process route to fabricate a printable ink and low temperature sintering process for conductive coatings on glass and plastic substrates

Results

Coated Glass Slides
- Coated glass slides show interference colours
- Colours correlate with concentration of precursor (further studies needed)

XRD-Analysis
- Sintering at temperatures below 600°C yields amorphous structure (left), above 600°C TiO\(_2\)-anatase peak forms

Microstructure
- Multi-coating process leads to surface defects
- Coating is very porous, connectivity needs to be improved
- Nanoparticles are clearly visible (Figure 9 on right side)

Sol-Gel Process

The Chemistry
- Structure of products depends on reaction rates
 - Influenced by nature and concentration of metal, catalyst, solvent as well as temperature and pH value of solutions
- Aim: Formation of a crosslinked polymeric network

Conclusion and Future Work

Summary
- Interference colours suggest that coating was formed
- XRD patterns showed formation of desired TiO\(_2\) anatase structure for sintering temperatures above 600°C
- SEM micrographs indicate porous coating with embedded nanoparticles

Next Steps
- Vary reaction conditions
 - pH, solvent, precursor, water
- Define degree of cross linking in solution and coating
- Optimise drying/curing step (temperature, atmosphere)
- Determine conductivity of coatings
- Change doping levels

Acknowledgments

Thank you to...
- European Commission, EASME, Horizon 2020
- Alec Gunner, Alan Taylor TWI Ltd.
- Anthony Bell, Sheffield Hallam University
- Simon Rushworth, EpivaLence

References

Contact: mirjam.skof@nsirc.co.uk
For more information visit: www.infinity-h2020.eu